Integrating Fuego Email Verification API with Python
This guide will show you how to integrate the Fuego Email Verification API into your Python applications. Whether you’re building a web application, data pipeline, or CLI tool, this guide covers the essentials for Python developers.
Prerequisites
- A Fuego account with an API key
- Python 3.6 or higher
- Basic knowledge of Python and HTTP requests
API Endpoint
The Fuego API endpoint for email verification is:
https://app.fuegoverify.com/api/v1/verify
Authentication
The API uses token-based authentication via a query parameter:
api_token = "YOUR_API_TOKEN"
# Token will be added to the URL as a query parameter
Method 1: Using the Requests Library
The requests library is the most popular HTTP client for Python and is recommended for most use cases.
import requests
def verify_email(email):
"""
Verify an email address using the Fuego API.
Returns the verification result as a dictionary.
"""
api_token = "YOUR_API_TOKEN"
url = "https://app.fuegoverify.com/api/v1/verify"
headers = {
"Content-Type": "application/json"
}
params = {
"email": email,
"token": api_token
}
try:
response = requests.get(url, headers=headers, params=params)
response.raise_for_status() # Raise exception for 4XX/5XX responses
return response.json()
except requests.exceptions.HTTPError as e:
if response.status_code == 429:
raise Exception("Rate limit exceeded. Please try again later.")
elif response.status_code == 401:
raise Exception("Invalid API token. Please check your credentials.")
else:
# Try to get error message from response
error_msg = "Unknown error"
try:
error_data = response.json()
error_msg = error_data.get("error", "Unknown error")
except:
pass
raise Exception(f"API error ({response.status_code}): {error_msg}")
except requests.exceptions.RequestException as e:
raise Exception(f"Request failed: {str(e)}")
except ValueError as e:
raise Exception("Failed to parse API response")
# Usage example
try:
result = verify_email("[email protected]")
print(f"Verification result: {result['result']}")
if result['result'] == "valid":
print("Email is valid!")
else:
print(f"Email is {result['result']}: {result.get('reason', 'No reason specified')}")
# Access domain intelligence
if result.get('domain_insight'):
company = result['domain_insight'].get('name', 'Unknown')
industry = result['domain_insight'].get('industry', 'Unknown')
print(f"Company: {company}, Industry: {industry}")
except Exception as e:
print(f"Error: {str(e)}")
Method 2: Using aiohttp (Async)
For applications that need to verify many emails concurrently or are built with async frameworks like FastAPI or aiohttp server, the aiohttp library is recommended.
import aiohttp
import asyncio
async def verify_email_async(email):
"""
Asynchronously verify an email address using the Fuego API.
Returns the verification result as a dictionary.
"""
api_token = "YOUR_API_TOKEN"
url = "https://app.fuegoverify.com/api/v1/verify"
headers = {
"Content-Type": "application/json"
}
params = {
"email": email,
"token": api_token
}
try:
async with aiohttp.ClientSession() as session:
async with session.get(url, headers=headers, params=params) as response:
if response.status == 429:
raise Exception("Rate limit exceeded. Please try again later.")
elif response.status == 401:
raise Exception("Invalid API token. Please check your credentials.")
elif response.status >= 400:
error_data = await response.json()
error_msg = error_data.get("error", "Unknown error")
raise Exception(f"API error ({response.status}): {error_msg}")
return await response.json()
except aiohttp.ClientError as e:
raise Exception(f"Request failed: {str(e)}")
except ValueError as e:
raise Exception("Failed to parse API response")
# Usage example with multiple emails
async def verify_multiple_emails(emails):
tasks = [verify_email_async(email) for email in emails]
results = await asyncio.gather(*tasks, return_exceptions=True)
verified_emails = {}
for email, result in zip(emails, results):
if isinstance(result, Exception):
verified_emails[email] = {"error": str(result)}
else:
verified_emails[email] = result
return verified_emails
# Run the async function
async def main():
emails = [
"[email protected]",
"[email protected]",
"[email protected]"
]
results = await verify_multiple_emails(emails)
for email, result in results.items():
if "error" in result:
print(f"{email}: Error - {result['error']}")
else:
print(f"{email}: {result['result']}")
# Run the async main function
if __name__ == "__main__":
asyncio.run(main())
Method 3: Using the Standard Library
If you cannot or prefer not to use external dependencies, you can use Python’s built-in urllib library.
import json
import urllib.request
import urllib.parse
import urllib.error
def verify_email(email):
"""
Verify an email address using the Fuego API with standard library.
Returns the verification result as a dictionary.
"""
api_token = "YOUR_API_TOKEN"
base_url = "https://app.fuegoverify.com/api/v1/verify"
# URL-encode the email and token parameters
params = urllib.parse.urlencode({"email": email, "token": api_token})
url = f"{base_url}?{params}"
headers = {
"Content-Type": "application/json"
}
try:
req = urllib.request.Request(url, headers=headers)
with urllib.request.urlopen(req) as response:
response_data = response.read().decode('utf-8')
return json.loads(response_data)
except urllib.error.HTTPError as e:
if e.code == 429:
raise Exception("Rate limit exceeded. Please try again later.")
elif e.code == 401:
raise Exception("Invalid API token. Please check your credentials.")
else:
# Try to get error message from response
error_msg = "Unknown error"
try:
error_data = json.loads(e.read().decode('utf-8'))
error_msg = error_data.get("error", "Unknown error")
except:
pass
raise Exception(f"API error ({e.code}): {error_msg}")
except urllib.error.URLError as e:
raise Exception(f"Connection error: {str(e.reason)}")
except json.JSONDecodeError:
raise Exception("Failed to parse API response")
# Usage example (same as the first example)
Working with the Response
The API returns a JSON response with detailed information about the email:
{
"email": "[email protected]",
"result": "valid", # or "invalid", "risky", "unknown"
"reason": None, # reason for invalid or risky result
"role": False, # true for role-based emails like "admin@" or "support@"
"free": False, # true for free email providers like Gmail or Yahoo
"disposable": False, # true for temporary/disposable email addresses
"accept_all": False, # true if the domain accepts all emails
"did_you_mean": None, # suggestion for misspelled emails
"domain": "techcorp.com",
"user": "alex",
"success": True,
"domain_insight": {
"category": "organization",
"name": "TechCorp Inc.",
"industry": "Software Development",
"country": "US",
"ticker": "TCH",
"employees": 3500,
"description": "TechCorp Inc. is a leading software development company..."
}
}
Handling Common Results
Here’s a utility function to handle verification results:
def handle_verification_result(result):
"""Process a verification result and return a simplified status"""
if result["result"] == "valid":
return {
"valid": True,
"message": "Email address is valid and deliverable",
"details": result
}
elif result["result"] == "invalid":
return {
"valid": False,
"message": f"Email address is invalid: {result.get('reason', 'Unknown reason')}",
"details": result
}
elif result["result"] == "risky":
return {
"valid": False,
"risky": True,
"message": f"Email address is risky: {result.get('reason', 'Unknown reason')}",
"details": result
}
elif result["result"] == "unknown":
return {
"valid": None,
"message": "Verification result is inconclusive",
"details": result
}
else:
return {
"valid": None,
"message": "Unknown verification result",
"details": result
}
# Example usage
try:
result = verify_email("[email protected]")
status = handle_verification_result(result)
print(status["message"])
# You can also access domain intelligence from the details
domain_insight = status["details"].get("domain_insight", {})
if domain_insight:
print(f"Organization: {domain_insight.get('name', 'Unknown')}")
print(f"Industry: {domain_insight.get('industry', 'Unknown')}")
except Exception as e:
print(f"Verification error: {str(e)}")
Flask Integration Example
Here’s how you might integrate email verification into a Flask web application:
from flask import Flask, request, jsonify
import requests
app = Flask(__name__)
def verify_email(email):
# Implementation from earlier examples
api_token = "YOUR_API_TOKEN"
url = "https://app.fuegoverify.com/api/v1/verify"
headers = {
"Content-Type": "application/json"
}
params = {
"email": email,
"token": api_token
}
try:
response = requests.get(url, headers=headers, params=params)
response.raise_for_status()
return response.json()
except Exception as e:
raise Exception(f"Verification failed: {str(e)}")
@app.route('/api/verify-email', methods=['POST'])
def api_verify_email():
data = request.get_json()
if not data or 'email' not in data:
return jsonify({"error": "Email address is required"}), 400
email = data['email']
try:
result = verify_email(email)
return jsonify(result)
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/signup', methods=['GET', 'POST'])
def signup_form():
if request.method == 'POST':
email = request.form.get('email')
try:
result = verify_email(email)
if result['result'] == 'valid':
# Proceed with signup
return "Account created successfully!"
elif result['result'] == 'risky':
return f"Please confirm your email address: {result.get('reason', 'Risky email')}"
else:
return f"Invalid email address: {result.get('reason', 'Unknown error')}"
except Exception as e:
return f"Email verification failed: {str(e)}"
# Return the signup form for GET requests
return """
<form method="post">
<label for="email">Email:</label>
<input type="email" id="email" name="email" required>
<button type="submit">Sign Up</button>
</form>
"""
if __name__ == '__main__':
app.run(debug=True)
FastAPI Integration Example (Async)
For modern async-first frameworks like FastAPI:
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, EmailStr
import aiohttp
app = FastAPI()
class EmailRequest(BaseModel):
email: EmailStr
class EmailVerificationResult(BaseModel):
email: str
result: str
valid: bool
reason: str = None
domain_insight: dict = None
async def verify_email_async(email):
# Implementation from earlier async example
api_token = "YOUR_API_TOKEN"
url = "https://app.fuegoverify.com/api/v1/verify"
headers = {
"Content-Type": "application/json"
}
params = {
"email": email,
"token": api_token
}
async with aiohttp.ClientSession() as session:
async with session.get(url, headers=headers, params=params) as response:
if response.status != 200:
error_text = await response.text()
raise HTTPException(status_code=response.status, detail=error_text)
return await response.json()
@app.post("/api/verify-email", response_model=EmailVerificationResult)
async def verify_email_endpoint(request: EmailRequest):
try:
result = await verify_email_async(request.email)
# Transform result to match response model
return EmailVerificationResult(
email=result["email"],
result=result["result"],
valid=result["result"] == "valid",
reason=result.get("reason"),
domain_insight=result.get("domain_insight")
)
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
Rate Limiting and Error Handling
The API has rate limits to ensure fair usage. Here’s a robust implementation with exponential backoff retry logic:
import time
import random
def verify_email_with_retry(email, max_retries=3, base_delay=1.0):
"""Verify email with retry logic for rate limits"""
retries = 0
while retries <= max_retries:
try:
return verify_email(email)
except Exception as e:
error_message = str(e).lower()
if "rate limit" in error_message and retries < max_retries:
# Calculate backoff delay with jitter
delay = base_delay * (2 ** retries) + random.uniform(0, 0.5)
print(f"Rate limited, retrying in {delay:.2f}s (attempt {retries+1}/{max_retries})")
time.sleep(delay)
retries += 1
else:
# Not a rate limit error or max retries reached
raise
raise Exception(f"Failed after {max_retries} retries")
Batch Processing
For large lists of emails, you might want to implement a batch processing approach:
import csv
from concurrent.futures import ThreadPoolExecutor
import time
def verify_email_batch(emails, max_workers=5, delay=0.2):
"""
Verify a batch of emails with controlled concurrency and rate limiting.
Args:
emails: List of email addresses to verify
max_workers: Maximum number of concurrent requests
delay: Delay between requests in seconds
Returns:
Dictionary of email to verification result
"""
results = {}
def verify_with_delay(email):
result = verify_email_with_retry(email)
time.sleep(delay) # Add delay between requests
return email, result
with ThreadPoolExecutor(max_workers=max_workers) as executor:
for email, result in executor.map(lambda e: verify_with_delay(e), emails):
results[email] = result
return results
# Example: Process a CSV file of emails
def process_email_csv(input_file, output_file):
"""Process a CSV file of emails and write results to output CSV"""
emails = []
# Read emails from CSV
with open(input_file, 'r', newline='') as csv_in:
reader = csv.reader(csv_in)
for row in reader:
if row and '@' in row[0]: # Basic validation
emails.append(row[0].strip())
# Verify emails in batches
print(f"Verifying {len(emails)} emails...")
results = verify_email_batch(emails)
# Write results to output CSV
with open(output_file, 'w', newline='') as csv_out:
writer = csv.writer(csv_out)
writer.writerow(['Email', 'Result', 'Reason', 'Company', 'Industry'])
for email, result in results.items():
company = ''
industry = ''
if result.get('domain_insight'):
company = result['domain_insight'].get('name', '')
industry = result['domain_insight'].get('industry', '')
writer.writerow([
email,
result.get('result', 'error'),
result.get('reason', ''),
company,
industry
])
print(f"Results written to {output_file}")
# Usage
process_email_csv('emails.csv', 'verification_results.csv')
Conclusion
You now have all the tools needed to integrate the Fuego Email Verification API into your Python applications. These integrations will help ensure that the email addresses in your systems are valid and deliverable, improving your email deliverability and customer data quality.
For more information and advanced usage, refer to the complete API documentation.
Pricing
For information about pricing, see our pricing page where you can calculate the exact cost for your email verification needs.